Согласно квантово-механической теории электропроводности металлов, электропроводность зависит от подвижности и плотности свободных электронов, от длины свободного пробега электрона, а скорость передачи электрической энергии – от средней скорости мигрирующих электронов.
Удельная электропроводность материала проводника равна
γ=ne2 t/2m
С другой стороны плотность тока
j = E γ = nev,
Где E-напряженность электрического поля, n – концентрация электронов, е – заряд, v –средняя скорость упорядоченного движения электронов, которое равно
v = eEt/2m,
Где t – среднее время свободного пробега электронов, m – масса носителя заряда.
Плотность тока определяется из выражения
j =ne2 tE/2m
В виду того, что скорость передачи электрической энергии по металлу зависит от скорости мигрирующих электронов, которая равна, примерно, V=1000 км/сек, скорость передачи электрической энергии по проводам равна скорости электронов /2/.
Длина волны в таком случае составит всего
λ=TV,
где Т — период, при частоте f=50 гц, равный 0,02 с.
В учебном пособии по физике «Электричество» /4/ отмечено, что существуют два различных процесса передачи электрической энергии: с помощью токов проводимости и при помощи токов смещения (электромагнитных волн). Если скорость изменения полей мала (малые частоты), то токами смещения можно пренебречь по сравнению с токами проводимости и последние играют основную роль. В этом случае электрические явления существенно зависят от сопротивления линии и, следовательно, от материала проводов.
Переменный ток частотой 50 Гц относится к низким частотам, поэтому надо считать, что передача активной электрической энергии переменным током осуществляется токами проводимости, а реактивной энергии электрическим полем.
Необходимо отметить, что вопросы разграничения двух процессов передачи электрической энергии в зависимости от частоты в литературе не приводятся. В линиях связи (телефон, телеграф, радио, телевидение), где применяются высокие частоты, сечение провода и материал не играют существенной роли, так как передача электрической энергии осуществляется распространением электромагнитных волн вдоль проводов линии.
Содержание главы:
- 2.1. Теория передачи энергии путем взаимного превращения электрического и магнитного полей
- 2.2. Теория переноса электрической энергии вдоль проводов.
- 2.3. Теории передачи электрической энергии электронной проводимостью
- 2.4. Теория передачи электромагнитными волнами (Волновая теория)
- 2.5. О теории прямой и обратной волны
Содержание книги:
- О теориях генерации, передачи электроэнергии и реактивной мощности
- Введение
- Глава 1. О теории генерации электрической энергии
- Глава 2. Теории электропередачи
- 2.1. Теория передачи энергии путем взаимного превращения электрического и магнитного полей
- 2.2. Теория переноса электрической энергии вдоль проводов.
- 2.3. Теории передачи электрической энергии электронной проводимостью
- 2.4. Теория передачи электромагнитными волнами (Волновая теория)
- 2.5. О теории прямой и обратной волны
- Глава 3. О теории электрических цепей
- Глава 4. Теория о реактивной мощности
- 4.1. Источники и потребители реактивной мощности
- 4.1.1 Синхронные генераторы
- 4.1.2 Роль электрических станций в выработке реактивной мощности
- 4.1.3. Роль электростанций в потреблении реактивной мощности
- 4.1.4. Синхронные компенсаторы (СК)
- 4.1.5. Батареи конденсаторов (БК)
- 4.1.6. Шунтирующие реакторы (ШР)
- 4.1.7. Силовые трансформаторы
- 4.1.8. Электродвигатели
- 4.1. Источники и потребители реактивной мощности
- Глава 5. О теории устойчивости линии
- Глава 6. Расчет режимов линии электропередачи
- 6.1. Реактивные мощности линии электропередачи
- 6.2. Натуральная мощность линии
- 6.3. О явлении резонанса напряжения и схемах замещения линии электропередачи
- 6.4. Расчет дальней сверхвысоковольтной линии электропередачи
- 6.5. О расчете межсистемной линии или работающей на шины бесконечной мощности
- 6.6. Общепринятый метод расчета режимов линии электропередачи
- 6.7. Величина и направления потоков реактивной мощности на линии
- 6.8. Расчет режимов линии с учетом баланса реактивных мощностей
- 6.9. Пример расчета линии по методу баланса реактивной мощности
- 6.10. Расчет линии при обратном потоке реактивной мощности от конца к началу
- 6.11. Зависимость реактивных мощностей линии и уровня напряжения на конце радиальной линии от нагрузки
- 6.12. Расчет падения и потери напряжения в линии электропередачи
- Глава 7. Управление уровнем напряжения с помощью ГЭС и компенсацией реактивной мощности на ней
- 7.1. Использование ГЭС для регулирования напряжения в энергосистеме
- 7.2. Усиление эффекта регулирования напряжения с помощью ГЭС за счет изменения реактивной мощности на линии
- 7.3. Расчеты уровней напряжения на примере линии «Токтогульская ГЭС — п/с Фрунзенская»
- 7.4. Режимы работы элементов линии 500кВ на примере электропередач от Токтогульской ГЭС
- Заключение
- Список литературы