. Эта линия выполнена в основном проводами 3хАС-300, на высокогорных участках применены 3хАС-400 и 3хАС-500, их протяженность небольшая. За активное сопротивление примем сопротивление поводов 3хАС-300, которое равно R0=0,033 Ом/км, индуктивное сопротивление х0 = 0,31 Ом/км.
Токтогулская ГЭС выдает свою мощность на напряжении 500 кВ двумя линиями на подстанции «Лочин» (Андижан) и «Фрунзенская (Чалдовар). Для компенсации зарядной мощности линий 500 кВ на ОРУ-500 кВ Токтогулской ГЭС и на конечных подстанциях установлены шунтирующие реакторы РОДЦ-60000.500-У1, мощность каждой группы 180 МВАр. Длина линии «Токтогулская ГЭС-Лочин» составляет 174 км, а «Токтогулская ГЭС-Фрунзенская» — 211 км.
Для регулирования напряжения на конечных подстанциях и на ГЭС по мере необходимости включают и отключают шунтирующие реакторы. Реакторы нерегулируемые, поэтому отсутствует возможность плавного регулирования напряжения. Регулирование напряжения происходит дискретно. Например, при включении или отключении группы однофазных реакторов на подстанции «Фрунзенская» напряжение меняется на 8-12 кВ.
Колебание напряжения происходят за счет изменения нагрузки в течение суток, в течение года. При изменении величины тока в линии меняется уровень напряжения в конце линии.
На подстанции «Фрунзенская» не используются устройства регулирования напряжения на автотрансформаторах (РПН), чтобы не вывести их из строя.
.. Напряжение в начале линии поддерживается на уровне U=525 кВ.
Расчеты произведем для резко отличающихся режимов работы линии, во первых, когда линия сильно недогружена Р=0,25Рнат, во вторых, когда линия перегружена. Натуральная мощность для данной линии составляет Рнат=900мВт. Активное сопротивление линии R=R0* l = 211*0,033=6,963 Ом, индуктивное сопротивление Х=Х0*l=211*0,31=64 Ом.
В случае сильного недогруза, напряжение на конце линии становится больше, чем в начале. Для того, чтобы уменьшить напряжение в конце линии можно снизить напряжение на выводах генератора на 5% (до15кВ). Напряжение на высокой стороне при этом составит 500 кВ.
Во втором случае при перегрузке линии напряжение на конце линии сильно уменьшается. Чтобы это уменьшение не было очень большим, напряжение на шинах станции можно поднять до U = 550кВ, соответственно на выводах генераторов до 16.5кВ (на 5%).
По предложенной нами методике расчета по балансу реактивных мощностей определены уровни напряжения на конце линии.
Режим малой нагрузки.
а) Напряжение на шинах станции постоянно.
U1=525кВ. (Uг=15,75кВ). Р=0,25Рнат=0,25*900=225 мВт.
На линии генерируется емкостная реактивная мощность.
QC1=U2*b=5252*7,68*10-4=211,7 мВАр.
Индуктируется индуктивная реактивная мощность.
QL1=3*I2*х=3*0,2862*64=15,76 мВАр.
где:
I1 = P / (√3 U cos φ1) = 225 / (√3 · 525 · 0,866) = 0,286 kA
Суммарная реактивная мощность
Q Σ = QC1-QL1 = 211,7- 15,7 = 196 МВАр
ΔUa = √3 I1 · R = √3 · 0,286 · 6,963 = 3,5 kB
При cosφ1 = 0.866, S =259.8 МВА, sinφ1 = 0,5; U=454.6 кВ, Up1 =262.5 кВ, Ua2 = 451.1 кВ, Q1 = 130.0 МВАр, Q2 = 326 МВАр, Up2 = Up1 √(Q2/Q1) =415.7 кВ. . Напряжение на конце линии будет равно U2 =613.4 кВ. Для снижения напряжения включена одна группа шунтирующих реакторов в конце линии. В этом случае реактивная мощность на конце линии снизится до 146 МВАр, соответственно снизится реактивная составляющая напряжения до 278.2 кВ и напряжение на конце уменьшится до 530.0 кВ, что выше допустимого напряжения. При включении второй группы реакторов напряжение снизится до 470.65 кВ. Это напряжение недопустимо мало.
Лучше регулировать напряжение конца путем изменения напряжения в начале линии. Регулируя ток возбуждения, например, уменьшив его на 5%, можно снизить напряжение до 500 кВ. При этом уменьшится емкостная реактивная мощность линии, увеличится индуктивная реактивная мощность, в целом уменьшается реактивная мощность в конце линии и соответственно напряжение увеличивается до 496.0 кВ, что всего на 1% меньше требуемого. Управление уровнем напряжения компенсацией реактивной мощности в сочетании с регулированием напряжения на ГЭС даёт лучший эффект.
Режим перегруза.
а) Напряжение на шинах станции равно номинальному U1=525кВ, Р=1,5Рн =1350 МВт, I1=1,65 кА; QC = 211,7 МВАр, QL = 522.5 МВАр, QΣ = -310.5 МВАр, соsφ1=0.9, sinφ1 =0.436, ΔUa =20.0kB, Ua2 = 452.5kB, Up2 =165.9kB, U2 =482.0kB
Напряжение в конце линии получается ниже номинального примерно на 5% (номинальное напряжение в конце линии должно быть равным 500 кВ).
б) Напряжение на шинах станции увеличено на 5% до 550 кВ (UГ=16,5 кВ), тогда при той же нагрузке I1=1,42 кА, QC2=232,3 МВАр, QL2=385.6 МВАр, QΣ =281,7 МВАр.. QΣ = -153.3MBAp, Ua1 =495kB, Ua =17.2kB, Up1 =239.7kB, Up2 =209.7kB и ΔU2 =521.8kB. Расчеты показали, что напряжение в начале достаточно увеличить до 535кВ, при этом напряжение в конце составит 501.8кВ.
Раньше нами приведена наибольшая нагрузка на линию 500кВ с проводами 3АСх300 по условиям нагрева Рнб = 1560 МВт. При такой нагрузке увеличением напряжения в начале линии в допустимых пределах можно добиться удовлетворения уровня напряжения на конце линии.
Как видно из расчетов при малых нагрузках вопрос управления уровнем напряжения с помощью неуправляемых шунтирующих реакторов легче решать в сочетании с управлением напряжения с помощью ГЭС.
Управление уровнем напряжения с помощью ГЭС особенно ценно при работе перегруженной линии. Ввиду отсутствия компенсации индуктивной мощности (синхронных компенсаторов или батарей конденсаторов) управление уровнем напряжения в узле энергосистемы с помощью ГЭС, является лучшим решением.
Эффект регулирования напряжения на конце линии, путем его изменения в начале, усиливается изменением на линии емкостного и индуктивного реактивных мощностей. При уменьшении напряжения снижается емкостная мощность, одновременно повышается потребление индуктивной мощности на линии за счет увеличения тока, в итоге уменьшается суммарная реактивная мощность. При малых нагрузках на линии за счет этого повышается эффект снижения напряжения на конце линии (при малых нагрузках необходимо снижать напряжение на конце линии). При больших нагрузках увеличение напряжения в начале линии увеличивает выработку емкостной мощности и снижает потребление индуктивной мощности в итоге увеличивается суммарная реактивная мощность и напряжение на конце линии повышается.
Как было рассмотрено выше (гл. 6) режим работы линии сильно зависит от ее нагрузки. В зависимости от нее меняется баланс реактивных мощностей в сверхвысоковольтной линии. При малых нагрузках требуется компенсация емкостной мощности, что на практике делается с помощью нерегулируемых шунтирующих реакторов (ШР). При больших нагрузках требуется компенсация индуктивной мощности, чего до настоящего времени на сверхвысоковольтных линиях не производится, хотя разработана соответствующая техника — синхронные компенсаторы достаточно больших мощностей.
Содержание главы:
- 7.1. Использование ГЭС для регулирования напряжения в энергосистеме
- 7.2. Усиление эффекта регулирования напряжения с помощью ГЭС за счет изменения реактивной мощности на линии
- 7.3. Расчеты уровней напряжения на примере линии «Токтогульская ГЭС — п/с Фрунзенская»
- 7.4. Режимы работы элементов линии 500кВ на примере электропередач от Токтогульской ГЭС
Содержание книги:
- О теориях генерации, передачи электроэнергии и реактивной мощности
- Введение
- Глава 1. О теории генерации электрической энергии
- Глава 2. Теории электропередачи
- 2.1. Теория передачи энергии путем взаимного превращения электрического и магнитного полей
- 2.2. Теория переноса электрической энергии вдоль проводов.
- 2.3. Теории передачи электрической энергии электронной проводимостью
- 2.4. Теория передачи электромагнитными волнами (Волновая теория)
- 2.5. О теории прямой и обратной волны
- Глава 3. О теории электрических цепей
- Глава 4. Теория о реактивной мощности
- 4.1. Источники и потребители реактивной мощности
- 4.1.1 Синхронные генераторы
- 4.1.2 Роль электрических станций в выработке реактивной мощности
- 4.1.3. Роль электростанций в потреблении реактивной мощности
- 4.1.4. Синхронные компенсаторы (СК)
- 4.1.5. Батареи конденсаторов (БК)
- 4.1.6. Шунтирующие реакторы (ШР)
- 4.1.7. Силовые трансформаторы
- 4.1.8. Электродвигатели
- 4.1. Источники и потребители реактивной мощности
- Глава 5. О теории устойчивости линии
- Глава 6. Расчет режимов линии электропередачи
- 6.1. Реактивные мощности линии электропередачи
- 6.2. Натуральная мощность линии
- 6.3. О явлении резонанса напряжения и схемах замещения линии электропередачи
- 6.4. Расчет дальней сверхвысоковольтной линии электропередачи
- 6.5. О расчете межсистемной линии или работающей на шины бесконечной мощности
- 6.6. Общепринятый метод расчета режимов линии электропередачи
- 6.7. Величина и направления потоков реактивной мощности на линии
- 6.8. Расчет режимов линии с учетом баланса реактивных мощностей
- 6.9. Пример расчета линии по методу баланса реактивной мощности
- 6.10. Расчет линии при обратном потоке реактивной мощности от конца к началу
- 6.11. Зависимость реактивных мощностей линии и уровня напряжения на конце радиальной линии от нагрузки
- 6.12. Расчет падения и потери напряжения в линии электропередачи
- Глава 7. Управление уровнем напряжения с помощью ГЭС и компенсацией реактивной мощности на ней
- 7.1. Использование ГЭС для регулирования напряжения в энергосистеме
- 7.2. Усиление эффекта регулирования напряжения с помощью ГЭС за счет изменения реактивной мощности на линии
- 7.3. Расчеты уровней напряжения на примере линии «Токтогульская ГЭС — п/с Фрунзенская»
- 7.4. Режимы работы элементов линии 500кВ на примере электропередач от Токтогульской ГЭС
- Заключение
- Список литературы