7.4.1. Режимы шунтирующих реакторов (ШР) ТГЭС

Согласно проекту на Токтогулской ГЭС предусмотрены шунтирующие реакторы на стороне500 кВ для компенсации емкостных (зарядных) мощностей линий 500 кВ. Были установлены однофазные реакторы типа РОДЦ-60000/500-У1. Суммарная мощность трех фаз составляет 180 МВАр.

На подстанции «Фрунзенская» установлены 2 группы реакторов суммарной мощностью 360 МВАр, на подстанции «Лочин» 1 группа реакторов мощностью 180 МВАр.

Реакторы включаются и отключаются в зависимости от уровня напряжения на шинах станции и подстанций, т.е. они используются только в двух режимах «включено» и «отключено». При превышениях напряжения ШР включаются и, наоборот, при его снижениях отключаются. Таким образом, ведется дискретное регулирование уровня напряжения. Например, включение шунтирующего реактора  на Токтогулской ГЭС в среднем снижает напряжение на стороне 500 кВ поданным летних и зимних замеров за 10 лет примерно на 8 кВ. На подстанции «Фрунзенская» включение одной или обеих групп реакторов снижает напряжение на 8-12 кВ. При отключении реакторов соответственно на столько же повышается напряжение на узле.

Согласно замерам на п/ст. «Фрунзенская» с 1996 по 2004г.г. и на Токтогулской ГЭс с1994 по2002г.г. перегрузок реакторов не было. Они загружались номинальной мощностью или меньше. Только один раз трехфазная группа реакторов на ТГЭС загружалась до 190 МВАр, т.е. всего на 5,5% больше номинальной мощности. Изменения напряжения на шинах станции и подстанций мало влияли на загрузку реакторов. Анализ режимов работы ТГЭС за 10 лет показывает, что ШР в основном компенсировали реактивную мощность, вырабатываемую генераторами станции. Имел место парадокс, на генераторах вырабатывают реактивную мощность и тут же его компенсируют. Вряд ли здесь есть резон. Шунтирующие реакторы, вместо того, чтобы выполнять свои функции – компенсировать реактивную мощность линий, компенсируют реактивную мощность, вырабатываемую генераторами. В период с июля 2003 года по май 2004 года ТГЭС работала без шунтирующих реакторов. Анализ уровней напряжения показал незначительное повышение среднего напряжения по сравнению с предыдущими годами, но оно находилось на нормальном уровне в 2003г. -525 кВ, в 2004 -528 кВ. Уровень напряжения на п/ст. «Фрунзенская» в эти годы оказался даже ниже, чем по сравнению с предыдущими годами.

Сравнение уровней напряжения с включенными реакторами и без них показал, что уровни напряжения мало отличаются друг от  друга. Напрашивается вывод, что применение ШР на ТГЭС малоэффективно для компенсации реактивной мощности ЛЭП 500 кВ.

Одним серьезным отрицательным фактом является частые отключения и включения шунтирующих реакторов. Как мы выше отметили, в нормальном режиме не претерпевают перегрузок. Но, тем не менее, не так редко реакторы выходят из строя. Причиной оказались переходные процессы, возникающие при коммутациях. При включениях и отключениях возникают коммутационные перенапряжения, которые вызывают большие динамические усилия в реакторе, за счет которых они выходят из строя.

За время после пуска Токтогулской ГЭС имели место ряд повреждений шунтирующих реакторов. Реактор фазы «А» вышел из строя в 1994 году за счет взрыва. Реактор фазы»В» вышел из строя в 2003 году. Имели место взрыв и возгорание масла. Реактор фазы «С» по результатам обследования 2004 года признан негодным к эксплуатации. В нем были выявлены многочисленные дефекты. Имел место выход из строя реактора на п/ст. «Фрунзенская». Выше нами было показано, что в нормальных режимах реакторы не претерпевали перегрузок, ни при каких режимах работы генераторов, линий электропередач. Можно с уверенностью сделать вывод, что причиной повреждения реакторов никак не могут быть какие – либо перегрузки в нормальных режимах. Некоторые предполагают, что причиной их выхода из строя является износ изоляции и старение масла. Однако периодические анализы масла, испытания изоляции не показывали каких- либо серьезных отклонений качества масла и изоляции.

Причиной выхода из строя реакторов являются коммутационные перенапряжения, возникающие при включении и отключении реакторов. При включении реактора с индуктивностью L, возникает колебательный контур с линиями электропередач с емкостью С. Согласно теории, происходит обмен энергией между элементами с емкостью и элементами с индуктивностью. Между магнитными и электрическими полями возникает колебательный процесс. Переток энергии между емкостями и индуктивностями вызывает переходный процесс. Переходные токи, возникающие при включениях и отключениях, вызывают в реакторе большие электродинамические усилия. Электродинамические силы вызывают ослабление прессующих шпилек обмотки, нарушения изоляции стягивающих шпилек, нарушение связи между прессующими вертикальными пластинами, обрыв проводов шлейфа главных выводов обмотки. Осмотры реактора с вскрытием активной части выявляют другие многочисленные дефекты: повсеместное вспучивание изоляции между катушками секции обмотки, выгорание межвитковой изоляции, замыкание стяжных шпилек вертикальных шунтов, смещение экрана на нижней плите вследствие этого ослабление крепежных болтов (согласно акту обследования от 2003 г.). Все эти повреждения являются следствием воздействия электродинамических сил. Эти повреждения вызывают повышенный нагрев, а также приводят к пробою изоляции. Причиной повреждения реакторов является не старение изоляции обмоток и окончания срока службы, а коммутационные перенапряжения.

По конструкции реакторы аналогичны силовым трансформаторам. Однако силовые трансформаторы имеют намного меньший параметр потока отказов. При одинаковом сроке службы трансформаторов и реакторов, на Токтогулской ГЭС и подстанциях «Фрунзенская» и «Лочин» каких-либо повреждений на трансформаторах не происходило, в то время как имели место неоднократные повреждения в реакторах. Причиной повреждений реакторов является частые включения и отключения реакторов. Возникающие при коммутациях переходные токи создают большие электродинамические силы внутри реактора, за счет которых происходят различные механические разрушения или повреждения в магнитопроводе, в крепежных деталях и в обмотках.

Возникающие при коммутациях перенапряжения представляют опасность и для другого оборудования, таких как кабель 500 кВ и прочие. При стремлении защитить кабель и прочее оборудование от повышений напряжений в 2,5-3 %, установкой шунтирующих реакторов, искусственно создаются перенапряжения, превышающие номинальное в несколько раз. Факты возникновения перенапряжений подтверждаются пробоями искровых промежутков вентильных разрядников. Пробивное напряжение вентильного разрядника РВМК-500П составляет от 660 до 760 кВ, импульсное пробивное напряжение – 1070 кВ. За период 2000 – 2004 годы на Токтогулской ГЭС разрядники на каждой фазе пробивались от 45 до 54 раз.

При включении выключателя реактора, возникающие переходные токи по данным осцилографирования доходили до 2100 А (10,5 номинала), что вызывает катастрофические динамические удары в обмотках реактора, которые приводят к витковым замыканиям, обрывам элементов обмотки и необратимому выходу реактора из строя. Факт возникновения перенапряжений при операциях выключателями также подтверждается срабатываниями вентильных разрядников на п/ст. «Фрунзенская». При проведении около 400 операций выключателями реактора, разрядник фазы «В» сработал 108 раз.  Было предложено поменьше производить операции с выключателями реакторов. Предложено в летнее время при малых нагрузках держать реакторы включенными, а зимнее время отключенными, и не производить ежесуточные отключения и включения, что означает включение и отключение производить всего 2 раза в год. Возможен полный отказ от использования шунтирующих реакторов на Токтогулской ГЭС. Обоснованием такого предложения является очень малый приток реактивной мощности от Л-509 (Токтогульская ГЭС — Фрунзенская) , так в 2004 г. ее приток составил в среднем всего 6,35 МВА и малая выработка ее на самой станции 56,6 МВАр. Эта выработанная реактивная мощность идет к п/ст. «Лочин», которая там востребована для поддержания напряжения. Основной приток реактивной мощности, генерируемая на линиях, идет к п/ст. «Фрунзенская». При включении шунтирующих реакторов снижается напряжение на выводах генераторов, что вызывает увеличение выработки ими реактивной  мощности, которая идет на компенсацию индуктивной мощности ШР. При включении ШР создается мощный колебательный контур, который при включениях и отключениях создают очень большие перенапряжения.

Использование реакторов на Токтогулской ГЭс противопоказано с точки зрения возникновения коммутационных перенапряжений при включении и отключении шунтирующих реакторов. Коммутационные перенапряжения более опасны для кабелей 500 кВ и прочего оборудования, чем небольшие повышения напряжения на 2-3%. Повышения напряжения при отключенных реакторах на Токтогулской ГЭС находились в пределах нормы. Нормы утверждены Циркуляром № Ц-01-95 (Э) «О допустимых эксплуатационных повышениях напряжения промышленной частоты на электрооборудовании 500-750 кВ ЕЭС России, утвержденного Департаментом науки и техники РАО ЕЭС России от 15.03. 1995 г. Нами предлагается отказаться от использования шунтирующих реакторов на электростанциях. При их включении снижение напряжения автоматически компенсируется выработкой реактивной мощности генераторами станции. Реальные замеры показывают, что ШР мало отсасывают зарядную мощность линии и очень мало влияют на уровень напряжения в системе.

Содержание главы:

Содержание книги:

Статьи и книги по теме:

4.1.6.1. Применение управляемых реакторов с регулируемыми зазорами

Применение управляемых реакторов с регулируемыми зазорами

 

Ведутся работы по использованию регулируемых или управляемых реакторов. Управление реактором осуществляется в результате целенаправленного изменения его параметров с помощью подмагничивания.

В настоящее время реакторы с подмагничиванием  и  соответствующие регуляторы для  автоматического  регулирования  режимов их работы находятся в стадии разработок и опытно-промышленной  эксплуатации /5/.

Установка неуправляемых ШР также имеет отрицательные стороны: вызывает удорожание, увеличивает потери электроэнергии, появляются феррорезонансные перенапряжения,  снижается надежность линии. Другой  большой недостаток — дискретное регулирование напряжения, только на два положения:  включено и отключено. Третий недостаток — частые включения и отключения выключателем.

Наиболее целесообразно использование плавно регулируемых шунтирующих реакторов. Альтернативным вариантом ШР с подмагничиванием являются реакторы новой    конструкции    с    регулируемыми   зазорами, предложенные и разработанные нами совместно с МЭИ, подтвержденные авторскими свидетельствами.

Реакторы новой конструкции,  предложенные нами,  могут снабжаться устройствами дистанционного управления,  которые позволяют автоматически регулировать его индуктивную мощность.

Ниже приведены описания конструкций пяти вариантов.

1. Реактор с равномерно регулируемыми воздушными зазорами имеет два ярма — верхнее и нижнее, между которыми расположены стержни.  Стержни состоят из отдельных участков, разделенных регулируемыми воздушными зазорами.  Реактор имеет прямолинейные вольтамперные характеристики и незначительные величины добавочных потерь в меди и стали от электромагнитных полей «выпучивания» в  области  регулируемых  зазоров.  Достигается  это за счет синхронного регулирования всех воздушных зазоров в магнитопроводе.

2. Реактор с радиально регулируемыми воздушными зазорами отличается от известных тем,  что зазоры в нем выполнены под косым углом к оси стержня,  а подвижные участки стержня перемещаются в радиальном направлении.  Это позволяет уменьшить инерционность подвижных  частей  магнитопровода за счет уменьшения их массы и габаритов, при сохранении равномерности электромагнитного поля в области воздушных зазоров.

3. Реактор с вращающимися участками стержня позволяет в широком диапазоне регулировать индуктивное сопротивление за счет изменения площади взаимного перекрытия подвижных и неподвижных участков  магнитопровода,  сохраняя при этом равномерность электромагнитного поля в зазорах в допустимых пределах и, тем самым, обеспечивая  линейность характеристик реактора.  Кроме того, длина воздушных зазоров остается постоянной,  а электрические потери в стержне не изменяются от потока «выпучивания».

4. Реактор с гидравлическим  регулированием  индуктивности снабжен  специальным следящим гидроприводом,  который позволяет поочередно, попарно противоположно перемещать отдельные участки стержня.  Причем,  в  зависимости от необходимой величины индуктивного сопротивления,  в первую очередь  начинает  увеличиваться воздушный  зазор, расположенный в середине стержня,  далее увеличение зазоров происходит попарно поочередно. Самими последними увеличиваются крайние воздушные зазоры,  расположенные ближе к ярмам магнитопровода. Кроме того, максимально возможная величина каждого воздушного зазора, начиная со среднего к крайним зазорам, уменьшается. Этим обеспечивается малое магнитное сопротивление вблизи торцов обмотки,  что уменьшает электромагнитные потоки рассеяния и, в результате, сокращаются добавочные электрические потери в элементах реактора. Известно, что снижение магнитного сопротивления вблизи торцов обмотки позволяет для стержневых реакторов с  воздушными  зазорами снизить добавочные потери более, чем в три раза.  Этот эффект будет сохранен в предлагаемой  конструкции реакторов, но  с обеспечением плавного регулирования индуктивного сопротивления.

5. Реактор с неравномерно регулируемыми воздушными зазорами состоит из тех же элементов, что и реактор с  равномерно регулируемыми  зазорами.  Но в данной конструкции с помощью упругих элементов, расположенных за пределами обмотки и выполненных в виде пружин растяжения, достигается неравномерное регулирование воздушных зазоров. Причем, воздушные зазоры, расположенные в середине стержня, изменяются на большую величину, а зазоры, расположенные ближе к торцам обмотки, — на меньшую. В результате улучшается  картина распределения электромагнитных потоков и, следовательно, уменьшаются электрические потери энергии. Расширение диапазона плавного регулирования индуктивного сопротивления достигается без увеличения габаритных размеров обмотки. Кроме того, расположение упругих элементов за пределами обмотки упрощает технологию сборки и эксплуатации реактора.

Под руководством автора разработаны новые конструкции реакторов с плавным регулированием индуктивности на базе нерегулируемого заземляющего реактора ЗРОМ-175/6. Она отличается простотой конструкции, имеет прямолинейную вольтамперную  характеристику и существенно меньшие значения добавочных потерь в меди и стали от электромагнитных полей «выпучивания» в области регулируемых зазоров. Реактор снабжен устройством для дистанционного управления. Имеется возможность автоматизированной настройки при плавном изменении тока в заданном диапазоне регулирования.

На рис. 4.1.6.1 показано конструктивное выполнение разработанного  реактора. На крышке бака закреплен реверсивный электропривод, с помощью которого перемещают верхнее ярмо вдоль вертикальной оси реактора таким образом, чтобы расстояние между верхним и нижним ярмами увеличивалось или уменьшалось. При этом будут равномерно и одновременно увеличиваться или уменьшаться все зазоры между отдельными участками, тем самым будет уменьшаться или увеличиваться магнитная проницаемость магнитопровода в целом. В результате индуктивное сопротивление реактора уменьшается или увеличивается. В целях ограничения диапазона перемещения верхнего ярма устанавливаются два концевых выключателя, которые автоматически отключают электродвигатель привода при достижении крайнего верхнего или нижнего положения ярма.

Опытный образец разработанного реактора испытан на производственно-ремонтном предприятии «Кыргызэнергоремонт». Результаты испытаний реактора показали прямолинейные вольтамперные характеристики (рис.4.1.6.2).

Применение управляемых реакторов с регулируемыми зазорами

Рис.4.6.1.1

Были изготовлены 3 управляемых реактора с регулируемыми зазорами. Они были установлены на 3-х подстанциях г. Бишкека для компенсации емкостных токов кабельных линий, которые показали надежную работу уже в течении 20 лет.

Рис. 4.6.1.2.

Первоначально новые конструкции плавно регулируемых реакторов предназначались для использования в качестве заземляющих (дугогасящих) реакторов. Новый тип управляемых реакторов с регулируемыми зазорами позже было предложено применять в качестве шунтирующих реакторов на сверхвысоковольтных линиях электропередачи. Конструкции и принцип работы неуправляемых дугогасящих и шунтирующих реакторов совершенно одинаковы. Разница в том, что дугогасящие (или заземляющие) реакторы используются в сетях 6-10 кВ, а шунтирующие – на напряжениях 500 кВ и выше.

Использование управляемых шунтирующих реакторов, индуктивное сопротивление которых меняется путем изменения немагнитных зазоров, дает возможность плавного регулирования в сетях высокого напряжения. Преимуществом использования управляемого реактора является минимум коммутации, не нужно его ежедневно включать и отключать. Регулирование напряжения будет происходить плавно. Главное преимущество заключается в том, что процесс управления напряжения в узле энергосистемы путем регулирования баланса реактивных мощностей можно автоматизировать, что сильно облегчает работу дежурному персоналу узловой подстанции.

Содержание главы:

Содержание книги:

Статьи и книги по теме:

4.1.6. Шунтирующие реакторы (ШР)

 

Реактор – это электромагнитное устройство, по конструкции  подобное трансформатору. Реактор, имея большую индуктивность, служит для компенсации емкостной мощности, преимущественно зарядной мощности линий электропередач. ШР  применяется в основном в линиях 500 кВ и выше. Обычно ШР устанавливают в начале и в конце линий 500 кВ и выше. В /40/  даны рекомендации, что установка на передающей станции целесообразно при длине передачи более 500 км, когда по условиям необходимого уровня напряжения в конце линии  нельзя использовать реактивную мощность генераторов. Какую же мощность реакторов необходимо устанавливать, как ее определить? По этому вопросу серьезных разработок проведено недостаточно. Имеется рекомендация, что необходима установка ШР, компенсирующего 60-80 % зарядной мощности линий 330-500 кВ. Также есть рекомендации равномерно размещать суммарную мощность реакторов вдоль линии. Рекомендуется для передачи 500 кВ длиной до 1000 км устанавливать ШР мощностью в расчете 0,7-0,9МВАр на каждый километр длины линии, т.е. мощность ШР должна быть прямо пропорционально длине линии.

Используются преимущественно нерегулируемые реакторы.  Они могут быть использованы только в двух режимах: включено и отключено. Отсутствие на нем регулирования требует частого включения и отключения, что является большим их недостатком. Переходные процессы при коммутациях вызывают выход их из строя.

Ведутся исследования и внедряются различные регулируемые компенсирующие устройства  для компенсации индуктивной реактивной мощности. За рубежом наибольшее распространение среди управляющих устройств получили статические компенсаторы реактивной мощности (СКРМ). Они выполняются на основе плавного или дискретного регулирования тиристорами мощности реактивного элемента (реактора или конденсатора), либо в виде насыщающегося или управляемого реактора.

Другой разновидностью управляемых компенсирующих устройств является управляемый реактор. Управляемый реактор значительно дешевле, проще и надежнее в эксплуатации, чем статические тиристорные компенсаторы и не уступают в быстродействии. По принципу работы управляемый реактор подобен магнитному усилителю, изменение индуктивности и соответственно потребляемой из сети реактивной мощности осуществляется путем регулирования постоянного тока в обмотке подмагничивания. В Советском Союзе также разработаны  аналогичные СКРМ устройства названные источниками реактивной мощности (ИРМ). Последние уже начинают внедрять.

В Кыргызской энергосистеме шунтирующие реакторы 500кВ установлены на Токтогулской ГЭС и на п/ст. «Фрунзенская». Об опыте их эксплуатации будет сказано ниже.

4.1.6.1.Применение управляемых реакторов с регулируемыми зазорами

Содержание главы:

Содержание книги:

Статьи и книги по теме:

О проблемах использования шунтирующих реакторов на Токтогульской ГЭС

Назначением шунтирующих реакторов (ШР) является компенсация емкостной реактивной мощности генерируемой высоковольтными линиями и электрическими станциями. Шунтирующие реакторы на Токтогульской ГЭС включаются в работу при превышении напряжения на шинах ОРУ 500 кв Токтогульской ГЭС, которое происходит при малых загрузках линий электропередач Токтогульская ГЭС – п/ст «Фрунзенская» и Токтогульская ГЭС – п/ст «Лочин». Известно, что на линиях при малых нагрузках преобладает реактивная мощность, которая суммируясь с реактивной мощностью, вырабатываемой генераторами станции, вызывает повышение напряжения на шинах ОРУ и понижающих подстанциях.

Мы считаем, что имеется полная возможность отказаться от использования шунтирующих реакторов на шинах электростанций. Это позволит избавиться от забот об их ремонте и замене. Они сильно греются и нередко выходят из строя. Их замена обходится очень дорого. Кроме того имеют место достаточно большие потери энергии на них. Отказаться от их установки на ОРУ станций возможно при более полном использовании возможностей генераторов электрической станции. Генераторы имеют устройства автоматического регулирования напряжения (АРН) или они называются АРВ (автоматическое регулирование возбуждения).

АРВ позволяют регулировать напряжение на выводах генератора в широких пределах. При полной нагрузке генератора, согласно ПТЭ, разрешается регулировать напряжение в пределах ±5%. При частичной загрузке генератора по условиям нагрева обмоток и активной стали допустимы большие отклонения напряжения. При напряжении на генераторе ниже 95% номинального ток статора не должен превышать 105% номинального.

Расчеты показывают, что даже в пределах регулирования напряжения ±5%, можно добиваться необходимых уровней напряжения на шинах ОРУ без включения шунтирующих реакторов.

Более глубокое регулирование напряжения с помощью АРВ генераторов позволяет также меньше включать в работу ШР на понижающих подстанциях энергосистемы, в данном случае на п/ст «Фрунзенская» и п/ст «Лочин».

Для претворения в жизнь такого предложения необходимо, во-первых, произвести тщательно выверенные расчеты и, во-вторых, провести проверку возможности его использования на практике, что не представляет трудностей.

 

 

Профессор, к.т.н. К.Рахимов

Статьи и книги по теме: